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The mechanism for the light-dependent DNA photolyase 
catalyzed cleavage of cyclobutane pyrimidine photodimers remains 
an unsolved problem. Various proposals are summarized in 
Scheme I.1 Recent transient absorption spectroscopy studies 
demonstrated the formation of a 400-nm-absorbing intermediate 
which may be assigned either to the three-electron-reduced flavin 
or to the deprotonated flavin semiquinone radical.2 Due to the 
high reactivity of the photodimer radical cation and anion, it has 
not been possible to measure reversible redox potentials for the 
photodimer. This, coupled with lack of information on the sta­
bilization of the photogenerated ion pair at the active site of the 
enzyme, introduces a serious element of uncertainty into ther­
modynamic arguments to differentiate between photodimer 
fragmentation from a radical cation or from a radical anion 
intermediate.2 The photodimer cleavage reaction results in the 
conversion of four sp3 centers to four sp2 centers. We therefore 
expected to observe a normal secondary deuterium isotope effect 
on the fragmentation reaction.3 In this communication, we 
describe the measurement of the isotope effects on the frag­
mentation of a model photodimer radical anion and cation and 
use these values to interpret the corresponding V/K isotope effects 
previously reported for the enzymatic reaction.4 

The model photodimers used in this study are shown in Scheme 
II.5'6 The photodimer radical cation was generated using an-
thraquinone as sensitizer,7,8 and the photodimer radical anion was 
generated using covalently linked methoxyindole as sensitizer.9 

The ratios of deuterio to protio starting materials and products 
were determined by double label scintillation counting as previously 
described for the enzymatic reaction,4 and the intermolecular 
isotope effects were calculated using the integrated rate equation 
described by Melander and Saunders.10 Our experimental results 
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1: R1=R2=H, OR3=OR4=(3H)-AcO. 
2: Ri=R2=D, OR3=OR4=(14C)-AcO. 
3: Ri=D, R2=H, OR3=OR4=(14C)-AcO. 
4; R,=H, R2=D, OR3=OR4=(14C)-AcO. 

5: R1=R2=H, OR3=9, OR4=(3H)-AcO. 
6: Ri=R2=D, OR3=9, OR4=(14C)-AcO. 
7: Ri=D, R2=H, OR3=9, OR4=(14C)-AcO. 
8: Ri=H, R2=D, OR3=9, OR4=(14C)-AcO. 

Table I. Isotope Effects on Anthraquinone-Mediated Cleavage 

substrates 
2+ 1 
3 + 1 
4 + 1 

isotope effect 
1.247 ±0.023°"c 

1.030 ±0.020"'* 
1.192 ± 0.018"* 

"Confidence coefficient = 99%. 'Based on four determinations. 
c Corrected to 100% deuteriation. 

Table II. Isotope Effects on 5-Methoxyindole-Mediated Cleavage 
substrates 

6 + 5 
7 + 5 
8 + 5 

isotope effect 
1.301 ±0.021"-* 
1.173 ±0.010"'* 
1.079 ±0.008"'* 

"Confidence coefficient = 99%. 'Based on six determinations. 
c Corrected to 100% deuteriation. 

Table III. Isotope Effects on Enzyme-Mediated Cleavage 

H4 
H4 
H4 

substrates 
-[U=U] + 6,6',5,5 
-[U=U] + 5,5'-D2-
-[U=U] + 6,6'-D2-

-D4-[U= 
[U=U] 
[U=U] 

isotope effect 
=U] 1.150 ±0.014" 

1.082 ±0.011" 
1.071 ±0.012" 

"Confidence coefficient = 99%. 

are summarized in Tables I and II. 
The pattern of isotope effects observed for the fragmentation 

of the photodimer radical cation is significantly different from 
the pattern observed for the fragmentation of the photodimer 
radical anion. For the radical cation fragmentation there is a 
substantial isotope effect on the cleavage of the first bond (6,6) 
and a small isotope effect on the cleavage of the second bond (5,5). 
In contrast, the fragmentation of the photodimer radical anion 
shows a substantial isotope effect on the fragmentation of both 
the first (5,5) and the second (6,6) bonds. 

Secondary intermolecular isotope effects reflect hybridization 
changes occurring during or before the first irreversible step of 
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a nonbranching reaction sequence.3 Therefore, if we consider the 
first bond cleavage reaction to be irreversible for both the indole-
and quinone-sensitized cleavage reactions, we would predict all 
of the isotope effect to be associated with cleavage of the 5,5 bond 
in the indole case and with cleavage of the 6,6 bond in the quinone 
case. Observation of an isotope effect associated with cleavage 
of the second bond in each case would be indicative of one or more 
of the following: (a) a ̂ -secondary isotope effect associated with 
the first bond cleavage, (b) reversible first bond cleavage, and (c) 
concerted cleavage of both bonds. 

On the basis of previous mechanistic studies on the fragmen­
tation of the photodimer radical cation, we propose that the isotope 
effects measured for the anthraquinone-sensitized cleavage support 
a stepwise mechanism where the first bond cleavage is effectively 
irreversible.7'11-u The small effect on the 5,5 bond cleavage may 
thus be due to a hyperconjugative effect15 or due to the small 
hybridization change occurring at C5 due to elongation of the 6,6 
bond in the transition state.16 

For the radical anion fragmentation, the relatively large isotope 
effect observed with the 6,6-dideuterio photodimer may be in­
dicative of an intrinsically different transition state for the first 
bond cleavage of the radical anion compared to the radical cation 
leading to a larger secondary /3-isotope effect. Alternatively, since 
the fragmentation of the photodimer radical anion is estimated 
to be ~ 103 times slower than the radical cation fragmentation,17 

the large 6,6 isotope effect may be due to reversibility of the 5,5 
bond cleavage. Thirdly, the pattern of effects observed for the 
indole-sensitized cleavage is also consistent with a concerted 
fragmentation with an asymmetric transition state. 

The previously published isotope effect studies on the DNA 
photolyase catalyzed cleavage of deoxyuridine dinucleotide pho-
todimers are shown in Table III.4 While these isotope effects 
are clearly not identical to either of the model systems due to the 
different forward commitment factors for the models and the 
enzyme, the pattern (i.e., substantial isotope effects for both the 
cleavage of the 5,5 and the 6,6 bonds) is similar to that observed 
for the indole-sensitized cleavage. Thus, we propose that the 
enzymatic reaction proceeds via the fragmentation of a photodimer 
radical anion. Studies utilizing photodimers substituted with an 
iodomethyl radical trap12 are now in progress to examine the 
timing of the bond cleavage steps. 
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Liquid crystals with transition-metal core groups (metallo-
mesogens) are increasingly a topic of investigation since metals 
can impart useful shapes and properties which are not easily 
produced in totally organic liquid crystals.1 A major distinction 
between metallomesogens and most organic mesogens is their 
greater tendency to exhibit intermolecular dative coordination in 
the solid state.1 These interactions can result in phase behavior 
with kinetic, structural, and thermodynamic complexities, Lat they 
also provide an opportunity to create useful supermolecular or­
ganizations. We have been exploring the use of intermolecular 
dative coordination in liquid crystalline materials to create non-
centrosymmetric assemblies with second-order nonlinear optical2 

and ferroelectric3'4 properties. Toward this end we have been 
investigating high oxidation state early metal monooxo complexes 
which have a propensity to exhibit either trigonal-pyramidal or 
square-pyramidal structures3 and in some cases assemble to give 
polymeric linear chain structures (e.g., (—M=O- - -M=O—)„) 
in the solid state. We have been focusing initially on the vanadyl 
Schiff-base complexes n(salen)VO, n(salpn)VO, and n-
(Me2salpn)VO shown6,7 and report herein that n(Me2salpn)VO 
species form a new type of unidirectional (head-to-tail) liquid 
crystalline linear chain polymer. 

The n(salen)VO complexes are green polymorphic materials 
which all display smectic mesomorphic behavior. A high-tem-
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